Not far outside the town of Pottsville, a railroad track runs through a tunnel in a hillside. There's only one track, and the tunnel is wide enough for only one train. But one day, two trains went into the tunnel from opposite directions. Each train entered the tunnel exactly at eight o'clock. Three minutes later, each train came out at the opposite ends of the tunnel. Yet, there was no collision! How was this possible?
Think about the time of day and the fact that the trains entered the tunnel at exactly 8:00...
One train comes at 8am and the other train came at 8pm.
Joel Jones Jr. has been told he must sit in his high chair for hours on end. His parents do not provide him with anything to eat or drink while he is sitting there, and he is told he must stay awake at all times while in his chair. He has also been instructed to immediately climb down from his high chair whenever he hears anyone screaming for help, and then get to the nearest water. Are these some kind of sick, twisted, abusive parents? Should D.C.F.S. be called, or is there some logical explanation for these bizarre instructions; and what possible occupation is being described?
Think about a profession that requires constant vigilance and quick response to emergencies, and where being near water is crucial...
Joel Jones Jr. works as a lifeguard at a public swimming pool.
Clayton grew up in a very large, very poor family. With a dozen children(six boys and six girls) to care for, his parents had a hard time providing food and clothing for everyone. Also, as hot water had to first be boiled on the stove to mix with cold water for baths, Clayton and his siblings were lucky to be able to take a bath even one time a month. As he grew older, Clayton was able to obtain a good-paying job, and could afford to move into better housing where he had enough food and clean clothing for himself; but his habit of rarely taking a bath stuck with him. In fact, Clayton now only takes a bath once every two years or so, but no one at his office job(where he has to wear a suit and tie) has ever complained of his having any body odor, or made any negative references concerning his personal hygiene. They say old habits die hard, but this one grew by leaps and bounds!! Refusing to take even a sponge bath, how does Clayton manage to keep his job without offending any of his co-workers?
Here's a hint: Think about Clayton's job and the specific requirements of his profession. It's not about his personal habits, but about the nature of his work.
Harry is in a history competition with two other students–Renèe and Tyler. The rules are as follows: A student will choose another student to target. A history question will be read out, and the student will give his or her answer. If the answer is correct, the target is eliminated. And if the answer is incorrect, the target stays in the game. This will happen until only one student remains. Harry isn't very good in history; his odds of answering correctly are 1/3. Renèe's odds are a little better–2/3. And Tyler is a history ace, with his odds of giving the correct answer being 3/3. Every student knows everyone else's odds. To be fair, Harry will begin; then, the turn will pass to Renèe, then to Tyler, and then to Harry, and so on until one player remains. How can Harry have higher chances to win?
Hint: Harry's strategy should focus on maximizing the chances of eliminating the strongest opponent, Tyler, as soon as possible.
On Harry's first turn, he should give the incorrect answer on purpose. If he targets Renèe and manages to eliminate her, then it's just Harry and Tyler; however, Tyler will definitely eliminate Harry because HIS odds are much higher. And if Harry targets Tyler and manages to eliminate him, then it's just Harry and Renèe; however, Renèe might eliminate Harry because she has higher odds. If Harry purposefully answers incorrectly, the turn will simply move to Renèe, who will answer next. On Renèe's first turn, she will likely target Tyler because he has higher odds than her. If she manages to eliminate him, then it's just Harry and Renèe. Harry will be going first with his shot at winning the competition. If Renèe doesn't eliminate Tyler, then it will be HIS turn; Tyler will target Renèe and eliminate her for sure due to his odds being higher than hers. Although Harry will have to go against Tyler in the end, it's still a fair situation because Harry will still be going first with a chance to win.
Two teenagers, covered in tattoos and dressed in black leather jackets with chains around their necks, strutted into a local business. Each of the teens was carrying a long, tapered, hardwood stick. When they entered the room, they arrogantly announced in a loud voice, "We are here to beat everyone in this room, and no one can stop us!" Several of the patrons started to leave out the back door, fearing a confrontation was unavoidable. The two, true to their words, proceeded to beat everyone in the room with their sticks, despite being heavily outnumbered. Everyone who dared to stand up to them was beaten in turn, but no one called the police to stop the beatings, and the owner of the establishment thanked them for coming --- and even welcomed them back! Has society completely fallen to pieces, or is there some rational explanation for these events?
Think "profession" rather than "punk rock" when considering the teenagers' attire and behavior.
The two talented teens had gone to either a local youth center, or to a local pool hall, where they successfully challenged and defeated each of the willing patrons there in the game of pool.
Which of the following statements are true, and which are false? 1. Only one of the statements is false 2. Exactly two of the statements are false. 3. Only three of the statements are false. 4. Exactly four of the statements are false. 5. All five of these statements are false.
Think about it like a paradox: if a statement says it's false, is it really false?
The only true statement can be #4. The others are false. #5 can't be true, because it says all the statements are false.
There were two mothers and two daughters, and they all went fishing. All of them caught a fish but when they counted there were only three fish. How was this possible?
Think about family relationships and generations...
There were only three because there was a grandmother a mother and a daughter. The mother was the daughter to the grandmother and she was the mother to the mother and the daughter was the daughter to the mother.
Four people are sitting around a campfire after a long day of recreation when one man comments: "Do you realize that around this campfire, the four of us include a mother, father, brother, sister, son, daughter, niece, nephew, aunt, uncle and a couple of cousins"?. If everyone is related by blood (with no unusual marriages) how is this possible?
Think about the different relationships that can exist between family members, and consider the possibility that some individuals might fit into more than one category...
The campfire circle includes a woman and her brother. The woman's daughter and the man's son are also present.
Once upon a time, there was a beautiful princess named Anna. Anna's father, the King, wanted to be sure his daughter married an intelligent man. To test his daughter's suitors the King hid Anna's picture in one of three boxes. The suitor had to be able to select the box with Anna's picture on one try and within twenty seconds. On the gold box was the message "Anna's picture is in this box". The silver box had the message "Anna's picture is not in this box." "Anna's picture is not in the gold box" was written on the bronze box. The King would tell each suitor "Only one of the three messages is correct." Which box contained Anna's picture?
Think about it like this: if a message is true, what would it imply about the other two boxes?
The silver box contained Anna's picture. If her picture had been in the gold box, two statements would have been true. (The messages on both the gold box and the silver box.) If her picture had been in the bronze box, two statements would have been true. (The messages on the bronze box and the silver box.)
Five baby boomer couples each have one child. Each child is a different age than any of the other children. Each child has a favorite toy which is different from any of the other children's favorite toys. Each family eats at only one fast food restaurant. No two women have the same name and no two men have the same name. The children's names are not known. The child who plays with trains is the youngest. Bill's child plays with a GI Joe. Julie's child likes Pokeman. Mike's family eats at Taco Bell. The family of the 4 year old likes Kentucky Fried Chicken. The oldest child is four years older than Marie's child. The child who plays with Barbie is 8 years old. The child with the age is in the middle, has a mother named Marie. The child in the family that eats at McDonalds has a two year age difference with Larry's child. Carol is the mother in the family that eats at Dairy Queen. The child that plays Nintendo likes Burger King. Steve's child is two years apart in age from the child of the family that eats at Kentucky Fried Chicken. The child that plays with trains is two years apart from the 6 year old. The child that eats at McDonalds is two years older or younger than Regina's child. Lisa's child is 10. Who is married to George?
Here's a hint to get you started:
Focus on the ages of the children first. Use the clues about the ages to figure out the order of the children from youngest to oldest. The clues about the toys and restaurants will help you match the children with their parents.
Lisa is married to George, and their 10 year old plays with Nintendo. They like to eat at Burger King. The associations are: Child age 4, mother Regina, Father Larry, trains, KFC Child age 6, mother Julie, Father Steve, Pokeman, McDonalds Child age 8, mother Marie, Father Mike, Barbie, Taco Bell Child age 10, mother Lisa, Father George, Nintendo, Burger King Child age 12, mother Carol, Father Bill, GI Joe, Dairy Queen To solve, draw a grid with five rows and five columns. Across the top, above the columns, write Age, Mother, Father, Toy and Food. Figure out the known ages and write them in order in the first column. One child's age is unknown at first. However, once the youngest child is discovered (the one who plays with trains) it is then known that the oldest child is the child with the unknown age. Through additional clues, it is possible to determine that the oldest child is age 12. Take the clue, Lisa?s child is 10. In the mother column corresponding to the age 10, you would write LISA (Maybe circle it, because it is the correct answer.) In the mother column for every other age, write "not Lisa". Do this for each clue. If you know the answer because of a clue, write it in the appropriate column, and then be sure to write "not such and such" in all the other rows for that clue. For example, "The youngest child plays with trains", would result in "not trains" for any child you can tell isn?t the youngest, but you can?t write "trains" for any child, because you don?t know which child is the youngest at first. Eventually, you may find that "mother not Marie" is on every line except one, and then you would know that Marie is the mother on the empty line.
A bus driver was heading down a street in Colorado. He went right past a stop sign without stopping, he turned left where there was a "no left turn" sign, and he went the wrong way on a one-way street. Then he went on the left side of the road past a cop car. Still - he didn't break any traffic laws. Why not?
Think about the occupation of the person involved...
A rotating fragment of mineral collects no byrophytic plants. What is the proverb?
Think about a common phrase that advises against accumulating something, and consider the words in the riddle as clever substitutions for the usual words in that phrase...
Carl is trying to find solutions to a geometric puzzle. He has a square plot of land that he needs to reserve 1/4 for himself and divide the remaining 3/4 equally and in a similar shape, among his 4 children. There are two possible solutions. Can you solve the puzzle?
Think about dividing the square into smaller squares, and then rearranging those smaller squares to create four equal shapes for the children...
Solution #1 - Squares
First, Carl divides his as to reserve to himself one-fourth in the form of a square.
Then, Carl takes the remaining 3/4 shape and scales it down by 1/4. He then, multiplies the shape into 4 identically shaped pieces, and aranges them so that they fit into the original 3/4 shape.
Solution #2 - Rectangles
First, create a triangle that is 1/4 the size of the square.
Now, with straight lines, create two squares.
Proceed to disect the two squares with horizontal lines creating 4 triangles.
Then, disect one of the resultuing triangles from each square. The shape of land for each of his four children is divided evenly and is the same shape.
Taking that internship in a remote mountain lab might not have been the best idea. Pulling that lever with the skull symbol just to see what it did probably wasn't so smart either. But now is not the time for regrets because you need to get away from these mutant zombies...fast. Can you use math to get you and your friends over the bridge before the zombies arrive? Alex Gendler shows how.
Think about the concept of "rate" and how it can be used to solve a problem involving time, distance, and speed.
At first it might seem like no matter what you do, you're just a minute or two short of time, but there is a way. The key is to minimize the time wasted by the two slowest people by having them cross together. And because you'll need to make a couple of return trips with the lantern, you'll want to have the fastest people available to do so. So, you and the lab assistant quickly run across with the lantern, though you have to slow down a bit to match her pace. After two minutes, both of you are across, and you, as the quickest, run back with the lantern. Only three minutes have passed. So far, so good. Now comes the hard part. The professor and the janitor take the lantern and cross together. This takes them ten minutes since the janitor has to slow down for the old professor who keeps muttering that he probably shouldn't have given the zombies night vision. By the time they're across, there are only four minutes left, and you're still stuck on the wrong side of the bridge. But remember, the lab assistant has been waiting on the other side, and she's the second fastest of the group. So she grabs the lantern from the professor and runs back across to you. Now with only two minutes left, the two of you make the final crossing. As you step on the far side of the gorge, you cut the ropes and collapse the bridge behind you, just in the nick of time.
I am a three-digit number. All of my digits are prime. One of the numbers is even. Each of my numbers are used only once. The total of my first and last digits equals 10. The total of my first two digits equals 5.
Think about the properties of prime numbers... Which prime number is even?
This one is fairly easy if you use elimination if you follow all the first 5 steps you get three options: 525, 327, and 723 but if you followed the last step you would reach your answer. The answer was 327.
Which number would be bigger: the product of all of the numbers on your calculator, or the SUM of those numbers?
Think about the number 0...
The sum would be bigger because multiplying any number by zero always results in zero. Yes, you have to include zero; it is also a number on your calculator.
A hundred stones are placed, in a straight line, a yard distant from each other. How many yards must a person walk, who undertakes to pick them up, and place them in a basket stationed one yard from the first stone?
Think about the journey, not the destination. Focus on the total distance traveled, not the number of trips made.
In solving this question it is clear that to pick up the first stone and put it into the basket, the person must walk two yards, one in going for the stone and another in returning with it; that for the second stone he must walk four yards, and so on increasing by two as far as the hundredth, when he must walk two hundred yards, so that the sum total will be the product of 202 multiplied by 50, or 10,100 yards. If any one does not see why we multiply 202 by 50 in getting the answer, we refer him to his arithmetic.
Now matter what, I come to you round, Floating up, floating down, A single pop, I'm on the ground, Then comes your unpleasant frown. What am I?
Think about something that is often associated with celebrations, but can also bring disappointment and frustration when it meets its demise...
I am a bubble. Bubbles always come out round no matter how you blow it. Bubbles also pop when they touch the ground. Usually bubbles go up and then down. Most of the time you and I will frown when a bubble pops. Therefore, the answer is a bubble.
I may be simple, I may be complex; I may have a name, but no gender or sex; I am often a question, or statement as a setup; I tend to have an answer, 'til you find it I won't let up. What am I?
Think about something that can be either straightforward or multi-layered, and is often used to prompt a response or spark curiosity...
I am passed from person to person but no hands are needed. I often change in this exchange. Always changing never remaining the same. What am l?
Think about something that is shared or communicated between people, but doesn't require physical touch. It's something that can be altered or modified as it's being passed along...
I always point in the right direction. My instructions are written in black and white. Disobey me and pay the consequences. I will never say more than two words at a time.
What am I?
Golden treasures I contain, guarded by hundreds and thousands. Stored in a labyrinth where no man walks, yet men come often to seize my gold. By smoke, I am overcome and robbed, then left to build my treasure anew.
What am I?
Think about a place where valuable resources are stored, but not in a typical sense, and the "hundreds and thousands" might not be what you expect...
I am the runner, The pencils the chaser. I eat up the lead, I choke on the eraser. When I am done, I become another one, To be used again. I am white And blank as well. I can be folded, Into a bell. My corners are cut perfectly, My lines are straight and blue. Me having black marks or not, Fully depends on you. What am I?
Think about something you use to write or draw on, and how it interacts with pencils and erasers...
My host thinks I'm an irritation, a bother, a pain. But he can't evict me, so here I will remain. Then one day I'm taken and ranked among my peers. Can you guess just what I am? Then you might call me dear.
Think about something that is often unwanted, but cannot be removed, and is later sorted and categorized with others like it, earning a new level of appreciation.
I can kill people, but without me there would be no people. I was born long ago and will someday die. I can cause fire and am a magician with water. I have more brothers than any person. There is very little that can stop me.
What am I?
Think about something that's essential for human existence, yet can also be deadly if not controlled. It's been around since ancient times, and its power can be both creative and destructive.
It can't be seen, can't be felt, can't be heard, and can't be smelt. It lies behind stars and under hills, And empty holes it fills. It comes first and follows after, Ends life, and kills laughter. What is it?
Think about something that is invisible and intangible, yet has a profound impact on the world and our lives. It's a concept, not a physical object.
A mother gave birth to six kids. The first daughter's name is July. The second daughter's name is August. The third daughter's name is September. The fourth daughter's name is October. The next child was a boy, therefore, she named him November. The mother was planning on having a girl named December, but it turned out that she got a boy. If she didn't name him December, what is his name?
Think about the pattern of the names and the reason behind the boy's name being November...
Jason. She took the first letter of the names of her children. July, August, September, October, November.
I am a seven-lettered word; my first three letters refer to a place a driver sits in a bus. My first five letters refer to a small room on a ship; my middle three letters are a container people put waste in. My last three letters refer to one that catches fish. My whole refer to a furniture with doors. What am I?
Think about different modes of transportation and how they relate to enclosed spaces...
He lived for days and months and years. Almost away from air, And never a leg nor arm had he, And never a lock of hair. But neither crippled nor lame was he. Nor had he a coat to wear. What is it?
Think about something that exists and grows over time, but doesn't have a physical body...
Whiling away the hours of flowers, Walking through fields of gold. Preening and pruning in lights fading hours, For petals to freeze in the cold. What is it?
"Think about a seasonal activity that prepares something beautiful for a specific time of year..."
"The Four Seasons" - Reasoning: This riddle takes the perspective of plant life during these times of the year, where each line represents one of the four seasons of the year; Spring, Summer, Autumn and Winter. Spring - where flowers are blooming - Summer - where fields of farm crop mature and turn golden in colour, before being harvested - Autumn - where the tree's shed their leaves and days grow shorter - and Winter - where the cold leaves frost and freezes plants.
A certain number has three digits. The sum of the three digits equals 36 times this number. Seven times the left digit plus 9 is equal to 5 times the sum of the two other digits. 8 times the second digit minus 9 is equal to the sum of the first and third.
What is the number?
A riddle in which the answer is a 6 letter word.
A monument - men all agree - am I in all sincerity. Half cat, half hindrance made. If head and tail removed should be, then most of all you strengthen me; replace my head, then stand you see on which my tail is laid. What is it?
Think about a structure that people often agree to visit or admire, and consider how the words "head" and "tail" might have different meanings in this context.
As a whole, I am both safe and secure. Behead me, and I become a place of meeting. Behead me again, and I am the partner of ready. Restore me, and I become the domain of beasts.
What am I?
Think about a word that has multiple meanings and can be modified by removing its "head" (first letter) to form new words with different meanings.
Four kings of whom I am one lord. Often on deck but never on board. Though I have a large heart, I am always seen at war. During which I always wear a suit, but never a suit of armor. Who am I?
Think about a game where strategy and skill are key, and the "war" is more of a mental battle...
A man while looking at a photograph said, "Brothers and sisters have I none. That man's father is my father's son." Who was the person in the photograph?
Think about family relationships and consider the speaker's statement carefully... the answer is a close relative!